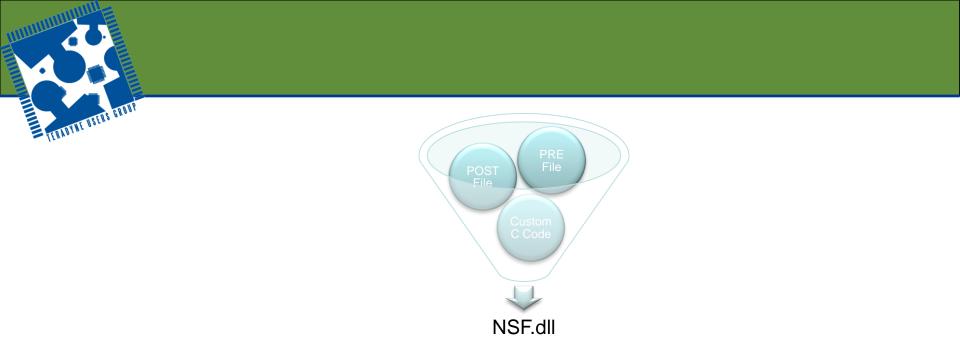


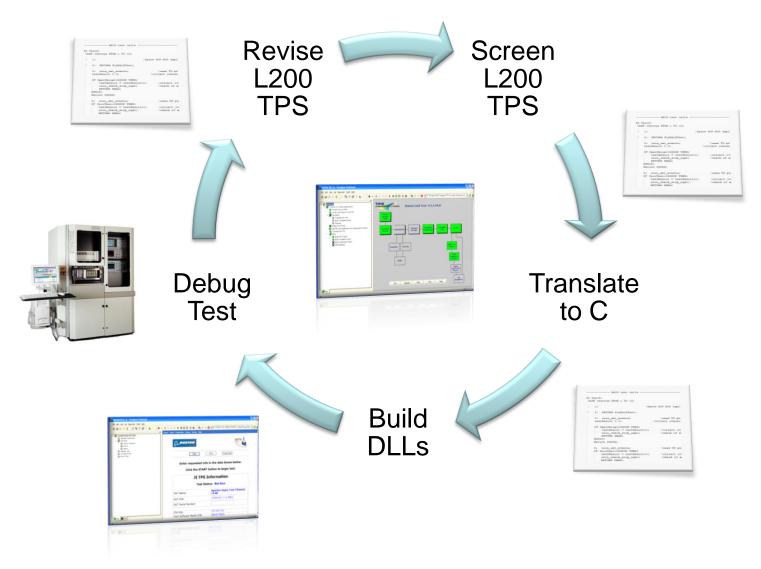
Journey of an Instrument NSF

Hans Ashlock hans.ashlock@asp-support.com Lin Yang lin.yang@asp-support.com Steve Gonet steve.gonet@teradyne.com


TERADYNE USERS GRUUA

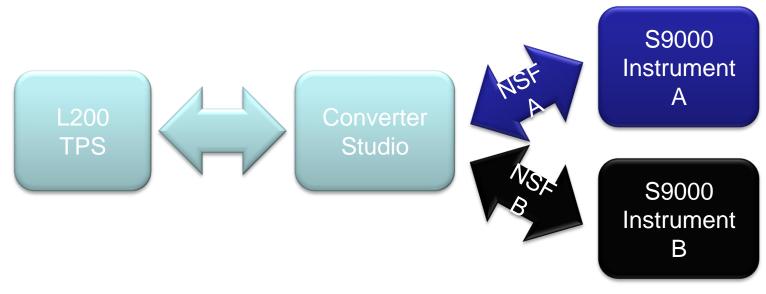
Introduction

- Alliance Support Partners, Inc. (ASP)
 - Located in Northern California
 - A proud member of Teradyne Support Network since 2004
 - Delivered over 200 TPS on S9 platform since then
- The Project
 - Rehost from L200 to S9 Platform using TPSCS
 - Two NSFs Timer Counter (TIMEMS) and IEEE
 - 5 New Non-Standard Instruments
 - VM2164 Timer Counter
 - Amrel DC Power Supply (IEEE)
 - Behlman AC Power Supply (IEEE)
 - NI Synchro / Resolver (IEEE)

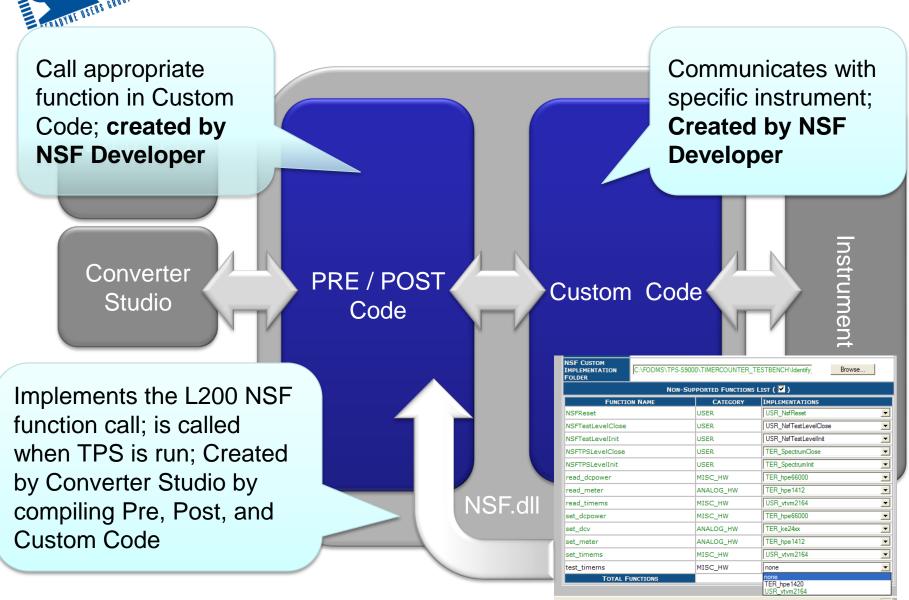


Using the Timer Counter NSF to take a closer look at how to create and test an NSF in Converter Studio

NSF - THE CREATION



Converter Studio Process



Instrument Interchangeability

- Allows instrument interchangeability without changing L200 TPS code
- Instrument NSF
 - Maintains Traceability
 - Reduces Complexity of Re-hosting

NSF Architecture in Converter Studio

Timer Counter NSF

"Customer needs to utilize the L200 PRECOUNT keywords and instrument capability which is not supported by standard S9000 configuration."

Agilent E1420

- 200 MHz Frequency
- 9-digit Resolution
- 2 ns (200 ps w/ averaging)

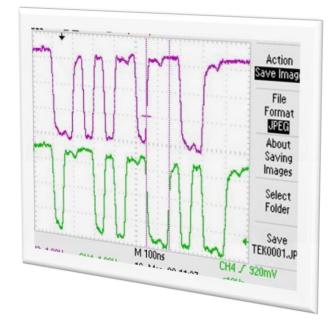
VTI VM2164

- 200 MHz Frequency
- 9-digit Resolution
- 1 nS (100 ps w/ averaging)
- 200 Readings per Second
- Arm Delay (PRECOUNT)

Writing Counter Timer NSF

- SET TIMEMS
 - Configures the Timer Counter Instrument
- READ TIMEMS
 - Reads the Timer Counter Measurement
- PRECOUNT
 - Option in SET TIMEMS
 - Provides delay after Counter Arm Condition

Integrate Into Converter Studio


S VERTER STUDIO	Setup: Build NSF Project
	DIRECTORIES, FILES, OPTIONS SELECTION
PROJECT ADE TYPE	C VC++ Project (VC++ 6.0) CVI Project (VC++ 7.0) CVI Project
SOURCE CODE DIRECTO	C:\FODMS\TPS-S9000\19760-501_JI\Identify_Implemen
Source Files	C Source Files Header Files CShellANALOG_HW.c CShellNew.def CShellIEE.c CShellNew.h CShellNewError.c CShellNewError.h CShellNewError.c CShellNewGlobals.h CShellNewUtil.c CShellNewOutput.h Version.h Version.h
BUILD OPTION	Release Mode Debug Mode
PROJECT LOCATION	C:\FODMS\TPS-S9000\19760-501_JI\Build\Build_NSF_Project Browse
PROJECT NAME	NSF_JI
	NSF BUILD FOLDERS SELECTION (
	ADDITIONAL FOLDERS AND FILES SELECTION (
ADDITIONAL INCLUDE DIRECTORIES	\USR_Vtvm2164 Browse
ADDITIONAL LINKED LIBRARIES	\USR_Vtvm2164\USR_Vtvm2164.lib Browse
ADDITIONAL SOURCE FILES	Browse
0	K Cancel Apply Print Help

Testing and Debugging NSF

NI Spy Capture

TELEVILLE USERS

- Verifies high level calls generate correct low level instrument commands
- Simultaneous Scope on Timer Counter Inputs
 - Verifies correct signal input
- L200 Test Bench
 - Written entirely in L200 Code
 - Use M9 and SCPM
 - No test fixture required

Reflections on Development Process

- Implementing NSF in DLL was very helpful
 - Debugging
 - Updating NSF w/o reconverting project
- Using existing NSF as template not efficient
 - Differences between old and new instrument
 - Traceability not as important as expected
- Test bench written in L200 has advantages
 - Verifies Custom Code
 - Verifies Pre / Post Code
 - Verifies the way in which functions are called

Resolving issues that arise integrating NSF and new instruments Into customer application.

NSF – SPEED BUMPS

Real World Issues

- Now that the NSF is written and "working" how does it fare when we run the converted TPS?
- Issues Encountered with Timer Counter
 - Order of Operations Issue
 - Counter Overflow Issue
 - Precount Issue
 - Signal Quality Issue

Order of Operations Issue

- **Problem**: Instrument unexpectedly looses configuration
- Root Cause: Order of commands sent to instrument
- Solution: Send commands in correct order
- Complicating Issues:

TELEVILE USERS

- Misunderstanding of documentation
- No feedback from instrument

Overflow Issue

- Problem: measurements periodically return incorrect results
- Root Cause: Instrument HW Bug
- Solution: Fix in SW by initializing twice
- Complicating Factors
 - Occurs infrequently
 - No test case that covered this scenario

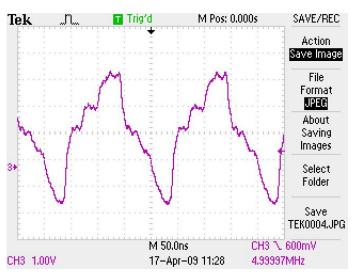
PRECOUNT Issue

- Problem: TIMEMS measurements using the PRECOUNT option returning unstable results
- **Root Cause**: Instrument not meeting spec
- Solution: Vendor to ECO instrument
- Complicating Factors

TELEVITE USERS

- No test case to verify instrument meeting spec
- Difficult to verify instrument configured properly

Signal Integrity Issue


- **Problem**: Readings fail and vary across systems
- Root Cause: Impedance mismatching causes signal reflection though SCPM
 - L200 has a digital switch matrix
 - S9000 has an analog switch matrix
- Complicating Issues:
 - Requires external signal analysis w/ Scope
 - Trial and error

TELEVITE USERS

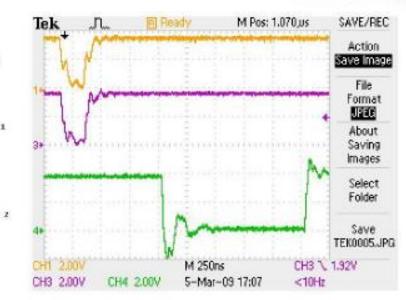
Signal Integrity Solution - 50Ω Input

- NSF Keyword: "SOURCE EXT50"
- Use 50Ω Input Impedance on Counter Timer
- Cleans Up Signal, But Loads it Down

Without 50 Ohm Input Impedance

With 50Ohm Input Impedance

Ideal Solution – Signal Buffer


- Custom Buffering in Fixture OR
- Off the Shelf Signal Buffer Matrix

With ASP Analog Signal Buffer (SBX36)

Original Signal (No Buffering)

SBX36

IEEE NSF

- Amrel DC Power Supply
 - Negative Voltage Programming Issue
 - SLOW Ramp Up Issue
 - No Response Issue
- NAI Synchro-Resolver
 - Instrument Not Functioning

Enhance Existing NSF

- Add on to existing NSFs for debugging
- For example:
 - Enhance SET JUMPER to include debug print of TxConnections

THE SPEC LIMITS ARE: -10	0.00000 TO	100.00000 MICROAMPS	~
Disconnecting Jumper 1 0			
)isconnecting Jumper 2 0			
Connecting Jumper 1 0 - Pin /	A6 to /LOAD2_2	(/19790-501_DCO/Configuration/VXI	I Test Syste
Connecting Jumper 2 0 - Pin /	LOAD2_1 to $/\overline{C7}$	(/19790-501_DCO/Configuration/VXI	I Test Syste
)isconnecting Jumper 1 0			
)isconnecting Jumper 2 0			
PAR 3.4.11: BITE TEST			
PASSED FTS PAR 3.4.11.1:			
PIN P1-A73 IS IN LOGIC	HI STATE		
JIMITS ARE FROM 2.5 VOLTS TO	5.25 VOLTS		

"Some people will never learn anything because they understand everything too soon."

Alexander Pope (1688 - 1744)

To that extent, we certainly learned a lot from this project.

NSF – LOOKING BACK

Lessons Learned

- Writing a good Instrument NSF is a lot of work!
 - Requires a lot of coding and attention to details
 - Requires developing rigorous test cases
 - Requires significant amount of hardware integration work
- Hardware may not behave the same even if it is claimed to be compatible
- Hardware may not work per its datasheet
- Analog Switching is a big problem for signal quality

Q & A

